安防行業中不少企業已經在紛紛布局智能前端的市場,以安防龍頭企業為例,它們推出的前端攝像機中內嵌深度學習算法,具有結構化信息提取、小型人臉庫比對、人體屬性分析、人員流量統計、道路實況檢測、車輛特征識別、全景監控等多種功能,將前端設備的智能化應用發揮到。此外,還將人眼仿生、MSS多光譜成像、被動紅外熱成像技術等技術融入其中,可對因環境造成的圖像模糊昏暗進行亮度與清晰度的還原,還能實現環境測溫、防火防盜等功能,引導著前端設備在深度智能化這條路上越走越遠。
深度學習開啟智能視頻分析技術的新篇章
近年來,深度學習在語音識別、圖像識別、自然語言處理等應用中取得了顯著的成效。深度學習也正影響著安防企業,影響著智能視頻分析技術。智能視頻分析是計算機圖像視覺技術在安防領域應用的一個分支,是一種基于目標行為的智能監控技術,其支持的功能主要有:人車物特征識別采集、人員及物件行為報警、視頻信號及質量診斷、視頻增強處理、圖像比對、視頻摘要、內容分揀等。深度學習解決了傳統智能視頻分析技術人工選擇特征準確率低、淺層學習模型無法解析大數據等問題,使視頻分析過程中識別準確率更高、環境適應性更好、識別種類更豐富。
在以人、車、物為核心視頻特征識別領域,目前成熟的其實是車輛識別算法,在平安城市建設和公安實戰創新的推動下,車輛識別技術在智慧交通、智慧警務等行業的應用取得了不錯的成果。國內以深圳華尊科技為代表,在算法準確率、系統穩定性、識別種類、公安車輛大數據實戰應用上表現得較為突出,且數次在華為國內外的大型活動中亮相。人臉識別算法因其應用的廣泛性,火爆程度遠遠大于車輛算法,但就目前的技術來看,在準確率、更深層的應用上還有很高的提升空間,以曠視、商湯為代表的算法公司也在高校人才及技術儲備、各行業的淺層應用上做出了努力。
大數據時代為算法研究提供了的計算工具,而數據量的增加也意味著需要更復雜的視頻分析算法模型來詮釋和挖掘這些數據,使占有巨大存儲資源的視頻數據發揮出更多的價值。目前人員行為分析、人群分析等復雜的算法還在起步階段,讓我們想象一下,基于對人體、生物體行為細節的捕捉和復雜分析模型,一個城市級的視頻大數據中心將能為公共安全、各類學科研究、商業發展乃至人類的進步做出多大的貢獻。
海量視頻數據存儲呈現前端分布式存儲、后端集中存儲和云存儲三種模式。